1. Find the image of the square $S = \{(u, v) \mid 0 \le u \le 1, 0 \le v \le 1\}$ under the transformation

$$x = u^2 - v^2 \qquad \qquad y = 2uv$$

- 2. Evaluate $\iint_R x + y dA$ where R is the trapezoidal region with vertices given by (0,0), (5,0), (5/2,5/2) and (5/2,-5/2) using the transformation x = 2u + 3v and y = 2u 3v. Sketch the regions transformation first.
- 3. Evaluate $\iint_R y dA$, where R is the region bounded by the x-axis and the parabolas $y^2 = 4 4x$ and $y^2 = 4 + 4x$, and $y \ge 0$
- 4. Verify the dV for both cylinderical and spherical coordinates.
- 5. An standard ellipsoid is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Using what you know create "ellipsoidic" coordinates for a specific a,b and c. Then verify the volume equation of an ellipsoid which is $V = \frac{4}{3}\pi abc$.

- 6. Evaluate $\iint_R (x+y)e^{x^2-y^2}dA$, where R is the rectangle enclosed by the lines x-y=0, x-y=2, x+y=0, x+y=3
- 7. A vector field in \mathbb{R}^2 is defined by $\mathbf{F}(x,y) = \langle -y,x \rangle$. Describe \mathbf{F} by sketching some of the vectors.
- 8. Sketch the vector field in \mathbb{R}^3 given by $\mathbf{F}(x,y,z) = \langle 0,0,z \rangle$
- 9. Find the gradient vector field of $f(x,y) = x^2 + y^2$. Plot the gradient vector field on the contour map of f.
- 10. Find the gradient vector field of $f(x,y) = x^2y y^3$. Plot the gradient vector field on the contour map of f.